|
Community ecology: interactions between species
Interactions between megafaunal burrowers
Where several species of burrowing megafauna occur together in the same
habitat it is not uncommon for burrows to interconnect, and some quite complex
multi-species systems have been revealed by resin-casting. Examples include burrow
complexes of Cepola rubescens with Goneplax rhomboides and Callianassa
subterranea (Atkinson et al., 1977), Nephrops norvegicus with Goneplax
rhomboides and Lesueurigobius friesii (Atkinson, 1974b), and Nephrops
norvegicus with Maera loveni (Atkinson et al., 1982). Interspecific connections
are very common in some localities. Tuck et al. (1994) found that 34% of Nephrops
burrows at a site in Loch Sween showed evidence of interactions with other species,
including Maxmuelleria lankesteri, Jaxea nocturna and Lesueurigobius
friesii, while 22% of the Maxmuelleria burrows examined by Nickell et al.
(1995a) were connected with those of Jaxea nocturna. In some of the latter cases
the Maxmuelleria and Jaxea shared the same burrow opening.
These interconnections are likely to be accidental in most cases and
not indicative of any close symbiotic relationship between the different burrowers.
However, once made, it is likely that connections will be maintained for their nutritional
and ventilatory advantages. For example, a species such as Jaxea nocturna may
benefit from association with Maxmuelleria lankesteri by taking advantage of the
organic-rich surface sediment pulled into the burrow by the worm.
The interactions within megafaunal burrowing communities are still too
poorly-known to say whether the presence of particular species has any positive or
negative effects on the abundance of others. Nephrops norvegicus has been observed
to prey on Calocaris macandreae (Smith, 1988), and will probably eat any of the
other thalassinidean species if encountered. However, high densities of Nephrops and
Calocaris coexist in many localities (Chapman, 1979). It is possible that the
digging activities of Nephrops norvegicus may very occasionally unearth specimens
of Maxmuelleria lankesteri (personal observations), leading to the demise of the
worm, which is probably unable to re-burrow when exposed.
It is conceivable that sea pens might be adversely affected by high
levels of megafaunal bioturbation, perhaps by an inhibitory effect on the survival of
small, newly-settled colonies. Sea pens and various species of burrowing megafauna
certainly coexist in many localities, but so far there has been no investigation of the
interaction between them.
Commensals
A variety of small benthic animals will take advantage of the shelter
offered by megafaunal burrows, especially when these are long-lasting or permanent
structures. Echiuran burrows in particular have been found to harbour a rich associated
fauna (Fisher & MacGinitie, 1928; Ditadi, 1982). Nickell et al. (1995a) found that
numerous small bivalves and polychaete worms colonized the walls of Maxmuelleria
lankesteri burrows. Mobile polychaetes such as Ophiodromus flexuosus, which
normally live out on the sediment surface were also seen to enter burrows. A similar
commensal fauna has been recorded in burrows of Echiurus echiurus in the German
Bight (North Sea) (Rachor & Bartel, 1981). In most cases the commensal organisms also
occur as part of the background sediment fauna and are not obligate burrow
residents. Within burrows they probably benefit from the echiurans irrigation
activities which supply both oxygenated water and food, and may additionally gain some
refuge from predators.
Thalassinidean burrow walls are probably a less suitable habitat for
commensals because of the continual reworking and sediment grazing activities of the
crustacean occupant. However, the body of the mud-shrimp itself may offer a substratum for
colonization. The ctenostome bryozoan Triticella flava grows as a dense
furry covering on the antennae, mouthparts and legs of burrowing crustaceans.
It occurs most commonly on Calocaris macandreae, but has also been found on Nephrops
norvegicus, Goneplax rhomboides, Jaxea nocturna and Upogebia spp. On Calocaris
macandreae, the bryozoan coverage is densest in late summer, but is shed when the
crustacean moults its exoskeleton in September-October (Buchanan, 1963). However, the
reproductive cycle of Triticella is synchronized with the moult cycle of its host
and larvae are available to recolonize the crustacean body after the moult (Eggleston,
1971).
A truly remarkable commensal organism was described in 1995 from the
mouthparts of Nephrops collected in the Kattegat, Denmark (Conway Morris, 1995).
This organism, named Symbion pandora, is a tiny sessile animal less than 1 mm long
with a basal attachment disc and an anterior ciliated food-gathering organ. It has a
complex life-cycle involving both sexual and asexual stages. In the details of its
structure, Symbion is so different from anything described previously that its
discoverers created an entirely new phylum (Cycliophora) to contain it (Funch &
Kristensen, 1995). Since the animal kingdom includes only about 35 phyla (each
representing a major basic body plan), the description of a new one is a significant
zoological event. Its association with Nephrops norvegicus illustrates that even
relatively well-known organisms can still yield surprising discoveries.
A few organisms have also been recorded in association with the British
sea pens. The isopod crustacean Astacilla longicornis has a specialised, highly
elongate body form and is sometimes found clinging to the rachis of Funiculina
quadrangularis. Another associate of Funiculina is the brittlestar Asteronyx
loveni, a species which uses its very long, prehensile arms to cling to the sea pen,
so maintaining itself in an elevated position above the sea bed (Fujita & Ohta, 1988).
Asteronyx is a deep-water form usually found below 100 m depth. In British waters
it has been sporadically recorded from the west of Scotland, but Loch Hourn holds the only
precisely-located inshore population (Dr J.D. McKenzie, personal communication).
Epifauna
In addition to the megafaunal burrowers and sea pens, the biotopes
within this complex support a variety of large animals living on or just below the
sediment surface. The burrowing anemone Cerianthus lloydii is common throughout
British and Irish waters in a wide range of sediment types. The much larger Pachycerianthus
multiplicatus has a very localised distribution on the western Scottish and Irish
coasts (it is also known from Scandinavia). This species is characteristic of the deep mud
biotopes CMU.SpMeg and CMU.SpMeg.Fun. Howson et al. (1994) listed it as present in only 16
of the 98 sea lochs covered in their report. The densest known populations are at the
heads of Lochs Fyne (Howson & Davies, 1991) and Duich (Connor, 1989). These two
anemones inhabit tubes embedded in the sediment and so are not strictly
epifauna. Another large (non-burrowing) anemone sometimes recorded on Nephrops
grounds is Bolocera tuediae. This anemone has frequently been seen surrounded
by aggregations of pink shrimps, Pandalus borealis, (C.J. Chapman, personal
communication), but the details of this association are not known.
Common epibenthic predators/scavengers occurring in these biotopes
include shore crabs Carcinus maenas, edible crabs Cancer pagurus, swimming
crabs Liocarcinus depurator, hermit crabs Pagurus bernhardus and the
starfish Asterias rubens and Crossaster papposus. The surface-living
brittlestars Ophiura ophiura, O. albida and O. affinis are common on the
sandier mud biotopes (CMS.VirOph, CMS.VirOph.HAs) and present in lower numbers on the
finer muds. The white, slug-like gastropod Philine aperta is often present at very
high densities (> 100 m-2) on the finer substrata. This species is a
predator of polychaete worms, bivalves and foraminiferans at the sediment surface.
Most of the common inshore fish species can be encountered over soft
mud biotopes but seldom in large numbers. The biotope complex is not a major habitat for
any commercially-important species. Aside from the specialist burrowers, the most
characteristic fish are probably the gobies Gobius niger and Potamoschistus
minutus.
Predation
Little is known about the intensity or importance of predation on the
characteristic species of the biotope complex. Birkeland (1974) described a complex
interaction between the sea pen Ptilosarcus guerneyi and seven predator species
(four starfish and three nudibranchs). In British waters the nudibranch Armina loveni
is a specialist predator on the sea pen Virgularia mirabilis. This sea slug is
infrequently recorded, but is known to occur from Norway to western France. In Puget
Sound, a related species, Armina californica is one of the predators of Ptilosarcus
guerneyi. Birkeland (1974) found that the nudibranch fed preferentially on the largest
sea pens. In the laboratory, individuals were found to eat an average of one Ptilosarcus
every four days. Armina was an uncommon animal at the study site and its impact
on the sea pen population appeared to be minimal. Another predator on Ptilosarcus was
the sun star Crossaster papposus. This species is also common in British waters and
so may be a potential predator on sea pens here. Amphipod crustaceans of the family
Stegocephalidae also appear to feed on sea pens, but little is known of their ecology
(Moore & Rainbow, 1984).
Many specimens of Virgularia mirabilis lack the uppermost part
of the colony, a feature which has been attributed to nibbling by fish. Mackie (1987)
found that extracts of Pennatula phosphorea inhibited feeding in sole Solea
solea, suggesting that this sea pen may possibly have a chemical defense against fish
predation.
Nephrops norvegicus is known to be eaten by a variety of
bottom-feeding fish, including cod, haddock, skate and dogfish. In some areas up to 80% of
cod stomachs are found to contain Nephrops (Howard, 1989). There are also numerous
records of fish predation on thalassinidean mud-shrimps, for example Buchanan (1963), who
found Calocaris macandreae in the stomachs of cod Gadus morhua and haddock Melanogrammus
aeglefinus. Since these mud-shrimps rarely if ever appear on the sediment surface, the
fish probably catch them by suction while they are engaged in activities (eg. sediment
expulsion) in the upper reaches of their burrows. The echiuran Maxmuelleria lankesteri
has also been recorded in the stomachs of Irish Sea cod. Rachor & Bartel (1981) found
that Echiurus echiurus was an important food for fish in the German Bight.
Sediment macrofauna
The burrowing megafauna and larger epifauna of these biotopes are
accompanied by a a diverse fauna of smaller animals living within the sediments. Animals
retained by a sieve of 0.5 mm mesh size are classed as macrofauna (those
passing through a sieve of this grade fall within the meiofauna and
microbiota). The macrofauna of marine sediments has generated an enormous
literature, particularly in the field of benthic pollution monitoring (review in Pearson
& Rosenberg, 1978), and only a brief outline of its composition relevant to the
general ecology of the biotope complex can be given here.
The organic-rich fine muds supporting the biotopes within this complex
(CMU.SpMeg and CMU.SpMeg.Fun) will typically support 30 - 45 macrofaunal species in areas
not suffering from gross organic pollution. The macrofauna is found largely in the top 10
cm of sediment, with a majority of individuals in the uppermost 3 cm. Polychaete worms
usually dominate in number of species and individuals. Members of the families Spionidae
(eg. Prionospio spp.) and Cirratulidae (eg. Chaetozone setosa, Tharyx
spp.) are often the most common taxa. In samples from Loch Sween, spionids and cirratulids
comprised up to 70% of the individual animals present (personal observations). These are
all small slender worms, 2 - 3 cm long, which use long anterior palps or tentacles to
collect organic particles in the sediment. Other small polychaetes important in this
environment are Scalibregma inflatum, and species of the genera Glycera, Nephtys
and Pholoë. Small bivalves such as Mysella bidentata, Corbula gibba
and Abra alba may be abundant. Other groups frequently present in large numbers are
nemertean and phoronid worms. The brittlestars Amphiura filiformis and A.
chiajei are also often common, with A. chiajei predominating on the finer muds.
Most of these animals are deposit-feeders, ingesting tiny organic particles and feeding on
the bacterial layer coating the sediment grains. Suspension-feeders include Amphiura
filiformis and Corbula gibba.
Other biotopes within the complex will also support a polychaete and
bivalve-dominated macrofaunal community, but the mix of species will differ according to
hydrodynamic conditions, sediment type and level of organic enrichment. In general, more
suspension-feeding animals will be found as the sediment grade becomes coarser. The
sandier muds with Virgularia mirabilis (biotope CMS.VirOph) will also usually have
the Amphiura species in large numbers (with A. filiformis predominating),
along with the large tube-dwelling polychaetes Chaetopterus variopedatus and Lanice
conchilega. Other important polychaetes include Goniada maculata, Nephtys
incisa and Notomastus latericeus. The three bivalve species mentioned in the
fine-mud fauna above are also frequently common in this biotope.
Most of the typical macrofauna of British sediments have very wide or
even cosmopolitan distributions. The unusual polychaete Sternaspis scutata is
limited to the southern English examples of biotope IMU.PhiVir, but has a very broad
distribution outside the British Isles.
Bioturbation and macrofaunal community structure
A phenomenon often reported in surveys of sediment macrofauna is the
high level of spatial patchiness in species distribution and abundance. Cores taken less
than a metre apart may show striking differences in faunal composition. Small-scale
differences in sediment characteristics undoubtedly contribute to this variability, for
example where localized patches of highly-enriched sediment are created by the
decomposition of loose seaweed or other organic detritus. However, the sediment fauna
itself may help to generate this spatial variability, a key factor being the disturbance
to the sea bed (bioturbation) caused by the activities of the large burrowing megafauna.
Where they occur in large numbers, megafaunal burrowers can have a profound influence on
their environment. In the southern North Sea, Callianassa subterranea was estimated
to turn over a total of 11 kg dry sediment m-2 year-1 (Rowden &
Jones, 1997), while in an Adriatic lagoon, the volume of water pumped through burrows by Upogebia
pusilla during periods of neap tides almost equalled the inflow of water from the open
sea (Dworschak, 1981).
Many studies have examined the effects of bioturbation on the smaller
sediment fauna (Hall, 1994). Both enhancing and inhibitory effects have been found,
depending on the identity of the larger burrowers and the nature of their activity. By
constructing and ventilating burrows, megafauna may oxygenate the sediments and make them
less compact by virtue of their bodily movements and digging activities. This will allow
macrofauna to occupy otherwise uninhabitable deeper sediments and may locally enhance the
food supply by stimulating bacterial growth. Thomsen & Altenbach (1993) found that the
numbers and biomass of bacteria and foraminifera were up to three times higher around
burrows of Echiurus echiurus than in the surrounding sediment. Enhancement of
macrofaunal diversity and abundance has been recorded in sediments colonised by dense
populations of enteropneust worms (Flint & Kalke, 1986) and echiurans (Rachor &
Bartel, 1981; Stull et al., 1986), with a marked decline in community diversity following
the disappearance of these larger burrowers.
Negative effects of burrowing megafauna on macrofaunal populations may
arise directly by predation, or indirectly as a result of burial, increased turbidity or
sediment compaction. Posey (1986) found that most sedentary macrofauna were much less
abundant in a dense Callianassa bed than in adjacent areas with fewer Callianassa.
Core samples taken from the vicinity of Nephrops norvegicus burrows and from nearby
unburrowed sediment showed that the abundance of macrofauna was reduced in near-burrow
areas (Smith, 1988) Tentaculate surface-feeding polychaetes were particularly affected.
Laboratory observations suggested that these were excluded by the sediment
bulldozing activities of the crustaceans. However, a number of small,
opportunistic nematode and oligochaete worm species were able to take advantage of this
and colonize the disturbed patches.
The overall conclusion to be drawn from these studies is that a mix of
megafaunal burrowers occurring in a sedimentary biotope will generate a complex and
continually-shifting mosaic of habitat patches experiencing different types
and levels of disturbance. The differing responses to macrofaunal species to this
patchiness will probably be a factor in the maintenance of local species diversity. The
depth penetration and total abundance of fauna in the sediment may also be enhanced by the
physical and chemical consequences of megafaunal activity. However, studies undertaken to
date have provided no evidence that any single megafaunal burrower acts as a
keystone species whose activity is the dominant factor in determining the
structure of the local biological community.
Next Section
References
|